Affine designs and linear orthogonal arrays

نویسنده

  • Vladimir D. Tonchev
چکیده

It is proved that the collection of blocks of an affine 1-design that yields a linear orthogonal array is a union of parallel classes of hyperplanes in a finite affine space. In particular, for every prime power q and every m ≥ 2 there exists a unique (up to equivalence) complete linear orthogonal array of strength two associated with the classical design of points and hyperplanes in AG(m, q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Properties of the Searching Probability

Consider search designs for searching one nonzero 2- or 3-factor interaction under the search linear model. In the noisy case, search probability is given by Shirakura et al. (Ann. Statist. 24(6) (1996) 2560). In this paper some new properties of the searching probability are presented. New properties of the search probability enable us to compare designs, which depend on an unknown parameter ?...

متن کامل

Cluster Orthogonal Arrays and Optimal Fractional Factorial Designs

A generalization of orthogonal arrays, namely cluster orthogonal arrays (CLOA), is introduced and some properties and construction methods are studied. The universal optimality of the fractional factorial designs represented by cluster orthogonal arrays is proved.

متن کامل

Taguchi’s Orthogonal Arrays Are Classical Designs of Experiments

Taguchi's catalog of orthogonal arrays is based on the mathematical theory of factorial designs and difference sets developed by R. C. Bose and his associates. These arrays evolved as extensions of factorial designs and latin squares. This paper (1) describes the structure and constructions of Taguchi's orthogonal arrays, (2) illustrates their fractional factorial nature, and (3) points out tha...

متن کامل

Enumeration of Strength Three Orthogonal Arrays and Their Implementation in Parameter Design

This paper describes the construction and enumeration of mixed orthogonal arrays (MOA) to produce optimal experimental designs. A MOA is a multiset whose rows are the different combinations of factor levels, discrete values of the variable under study, having very well defined features such as symmetry and strength three (all main interactions are taken in consideration). The applied methodolog...

متن کامل

Orthogonal Designs of Kharaghani Type: II

H. Kharaghani, in "Arrays for orthogonal designs", J. Combin. Designs, 8 (2000), 166-173, showed how to use amicable sets of matrices to construct orthogonal designs in orders divisible by eight. We show how amicable orthogonal designs can be used to make amicable sets and so obtain infinite families of orthogonal designs in six variables in orders divisible by eight.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 294  شماره 

صفحات  -

تاریخ انتشار 2005